Telegram Group & Telegram Channel
🎯 Отличный момент, чтобы поговорить про смещение (bias) и разброс (variance)

Разложение ошибки модели на смещение и разброс называется bias-variance decomposition. Bias показывает, насколько предсказания алгоритма систематически отклоняются относительно истинных значений. Variance характеризует разброс предсказаний в зависимости от обучающей выборки.

В целом, смещение говорит о том, насколько близкие к истинным значения выдаёт модель, а разброс — насколько она чувствительна к изменениям в обучающей выборке.

Есть такое понятие как trade-off (компромисс) между bias и variance. Идея состоит в том, чтобы найти баланс, при котором модель достаточно сложна, чтобы выдавать приближённые к реальным ответы (низкий bias), но также имеет способности к обобщению, чтобы работать хорошо на новых данных (низкий variance).

Если модель недообучена, она не сможет уловить сложные закономерности в данных (высокий bias), но будет более стабильно работать на новых данных (низкий variance). Если модель переобучена, она будет отлично работать на тренировочных данных (низкий bias), но плохо на новых (высокий variance).



tg-me.com/ds_interview_lib/93
Create:
Last Update:

🎯 Отличный момент, чтобы поговорить про смещение (bias) и разброс (variance)

Разложение ошибки модели на смещение и разброс называется bias-variance decomposition. Bias показывает, насколько предсказания алгоритма систематически отклоняются относительно истинных значений. Variance характеризует разброс предсказаний в зависимости от обучающей выборки.

В целом, смещение говорит о том, насколько близкие к истинным значения выдаёт модель, а разброс — насколько она чувствительна к изменениям в обучающей выборке.

Есть такое понятие как trade-off (компромисс) между bias и variance. Идея состоит в том, чтобы найти баланс, при котором модель достаточно сложна, чтобы выдавать приближённые к реальным ответы (низкий bias), но также имеет способности к обобщению, чтобы работать хорошо на новых данных (низкий variance).

Если модель недообучена, она не сможет уловить сложные закономерности в данных (высокий bias), но будет более стабильно работать на новых данных (низкий variance). Если модель переобучена, она будет отлично работать на тренировочных данных (низкий bias), но плохо на новых (высокий variance).

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/93

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from nl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA